Confidence Region of Singular Subspaces for Low-Rank Matrix Regression

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank Incremental Methods for Computing Dominant Singular Subspaces

Computing the singular values and vectors of a matrix is a crucial kernel in numerous scientific and industrial applications. As such, numerous methods have been proposed to handle this problem in a computationally efficient way. This paper considers a family of methods for incrementally computing the dominant SVD of a large matrix A. Specifically, we describe a unification of a number of previ...

متن کامل

A Rank Revealing Randomized Singular Value Decomposition (R3SVD) Algorithm for Low-rank Matrix Approximations

— In this paper, we present a Rank Revealing Randomized Singular Value Decomposition (R 3 SVD) algorithm to incrementally construct a low-rank approximation of a potentially large matrix while adaptively estimating the appropriate rank that can capture most of the actions of the matrix. Starting from a low-rank approximation with an initial guessed rank, R 3 SVD adopts an orthogonal Gaussian sa...

متن کامل

A Union of Low-Rank Subspaces Detector

The problem of signal detection using a flexible and general model is considered. Due to applicability and flexibility of sparse signal representation and approximation, it has attracted a lot of attention in many signal processing areas. In this paper, we propose a new detection method based on sparse decomposition in a union of subspaces (UoS) model. Our proposed detector uses a dictionary th...

متن کامل

Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations

Gaussian processes (GP) are Bayesian nonparametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due to its cubic time cost in the data size. This paper presents two parallel GP regression methods that exploit low-rank covariance matrix approximations for distributing the computational load among p...

متن کامل

Representing Sentences as Low-Rank Subspaces

Sentences are important semantic units of natural language. A generic, distributional representation of sentences that can capture the latent semantics is beneficial to multiple downstream applications. We observe a simple geometry of sentences – the word representations of a given sentence (on average 10.23 words in all SemEval datasets with a standard deviation 4.84) roughly lie in a low-rank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2924900